Selective NOx Recirculation for Lean Burn Natural Gas Engines

DOE Sponsors

Ronald Fiskum, Program Sponsor, DOE/EERE William Cary Smith, Project Manager, DOE/NETL Raj Sekar, Technical Manager, ANL

WVU Project Team

Nigel Clark, Gregory Thompson, Chamila Tissera, Emre Tatli, Andy Zimmerman, Richard Atkinson, Jaykumar Vidiyanadan

Industry Interaction

Sorbent Technologies (Twinsburg, Ohio) Cummins, Inc. (Columbus, Indiana)

COOPERATIVE AGREEMENT: DE-FC26-02NT41608

National Research Center for Alternative Fuels, Engines & Emissions

Selective NOx Recirculation (SNR)

- Basic Steps
 - Adsorption of NO_X
 - Periodic desorption of NO_X
 - Recirculation of NO_X into the combustion chamber
 - Concept promoted by Sorbent Technologies
 - Prior papers by (Krutzsch et al., 1998 and (Chaize, E. et al., 1998)

Benefits

- Employs established components
- Eliminates consumable reductants
- Minimizes engine modifications

Outline

- NOx decomposition in a lean burn natural gas engine
- Chemical kinetic modeling of NOx decomposition
- NOx decomposition on a stoichiometric/rich burn natural gas engine
- Use of EGR with stoichiometric/rich burn operation
- System modeling prediction
- Preliminary NOx adsorber characteristics
- Timeline and future plans

Establishing NO_X Decomposition Rates

- □ Nitric oxide (NO) 98.8% purity was injected
- NOx Decomposition percentage was quantified by comparing 20-second injections made into the exhaust vs. intake
- Peak value is for central averaged 10 seconds of injection

NOx decomposition % =
$$1 - \frac{\left(NO_{X_Peak_Intake} - NO_{X_Baseline}\right)}{\left(NO_{X_Peak_Exhaust} - NO_{X_Baseline}\right)}$$

Initial Characterization of NOx Decomposition (Test Engine – 1)

- 1993 Cummins L10240G
- Lean-burn natural gas engine
- Inline 6 cylinder
- Spark ignited
- Turbocharged
- Open-loop fuel mixer

1993 Cummins L10G Controlled Variables

Test	Load	Speed	Injected NOx(%)	Air/Fuel
Engine	(ft-lb)	(rpm)		Ratio (λ)
Cummins	Varied	Constant	Varied	Varied
L10G	100-400	800	0.5 - 2.5	1.35-1.41

Sample NOx Injection Matrix

Speed (rpm)	Load (ft-lb)	NOx% in Intake	Intake Flow Rate (lps)
800	100	2.5	21
800	175	2.5	36
800	250	2.5	47
800	325	2.5	57
800	400	2.5	64

1993 Cummins L10G - NOx Injections at Increasing Load

- \blacksquare Injections made at each load change 100 to 400 ft-lb for lambda 1.38< λ <1.41
- \square The same test was conducted with a "less lean" lambda of 1.35< λ <1.38

1993 Cummins L10G - Effects of Load and Air/Fuel Ratio

- Slight change in air/fuel affected on NO_x decomposition
- Data published in ASME ICED2004-839 and SAE 2005-01-0234
- NOx decomposition levels insufficient for practical application

Chemical Kinetic Modeling for a Natural Gas Engine

- Intent was to find suitable operating conditions for high decomposition
- Chemical kinetic modeling used CHEMKIN 4.0 software from Reaction Design
- □ CHEMKIN made use of the GRImech version 3.0 reaction mechanism developed by the Gas Research Institute
- Assumptions
 - Chemical reactions occur within a closed volume or a combustion bomb and not in a cylinder
 - Initial composition of air, fuel, and NOx is homogenous
 - Pressure and temperature are chosen to mimic conditions near TDC

Fuel Burnout Rate

NOx Decomposition at $\lambda = 1.4$

Initial mole fractions of CH₄, O₂, N₂, NO in the mixture and volume were held constant

NOx Decomposition at $\lambda=1$ (Stoichiometric)

NOx Decomposition at $\lambda = 0.9$

 Results of modeling were presented at Second Annual Advanced Stationary Reciprocating Engines Conference and at ORNL Workshop

Modeling Conclusions

- Software model predicted conversion rates between 20% and 25% for the lean operation, while experiments showed 14% and 25% for the natural gas engine
- Predicting NO_X levels on large time scales confirms that the NO_X conversion is rate limited rather than equilibrium limited
- The model showed that at rich conditions at an appropriate temperature, 80% decomposition levels can be expected

Ad Hoc Experiment (Test Engine -2)

- 1998 Honda GX390
- 13hp gasoline 4 stroke engine
- Single cylinder
- Stoichiometric / rich operation

Honda GX390 - NOx Injection Matrix

Test	Load	Speed	Injected NOx(%)	Air/Fuel
Engine	(ft-lb)	(rpm)		Ratio
Honda	Varied	Constant	Varied	Constant
GX390	1.0 - 9.8	3600	1.0 - 75.0	

Sample NOx Injection Matrix

Speed (rpm)	Load (ft-lb)	NO% in Intake	Intake Flow Rate (lps)
3600	1.0	5.0	4.4
3600	3.9	5.0	4.8
3600	7.8	5.0	5.8
3600	9.8	5.0	6.4

 Loads were calculated by accounting for the electrical loads and generator efficiency

Honda GX390 - NOx Injections

Comparing NOx Injection Concentrations

- Contrasting rich gasoline with lean natural gas engine
 - 1993 Cummins L10
 - Injected NO concentration varied from 0.5% to 2.3% of the intake air at 800rpm and 400ft-lb
 - Honda GX390
 - Injected NO concentration varied from 1% to 5% of the intake air at 3600rpm and 9.8ft-lb

Effects of High NOx Injection Concentration on Honda GX390

Observations

- Exhaust gas temperature on the gasoline engine rose (80-110°F) during NOx injections
- A significant exhaust gas temperature change was not observed on the 1993 Cummins L10G
- Hydrocarbon emissions varied on both engines during NOx injections
- There was no significant change in CO and CO₂ emissions during NOx injections

Experimental Conclusions with 1993 L10G and Ad Hoc Experiments

- It is possible to decompose NOx by passing it through an IC engine at sufficiently high concentrations
- Engine load and air/fuel ratio affected NOx decomposition on the 1993 Cummins L10G
- NOx injection concentration had a moderate affect on NOx decomposition on both engines
- In the gasoline engine, disassociation of NO made the combustion mixture leaner, thus raising the combustion temperature
- High NOx decomposition rates may be possible if a lean burn engine is operated at a stoichiometric air/fuel ratio with sufficient amount of EGR during the NOx decomposition phase (EGR can control temperature, knock and power density)

Use of Stoichiometric/Rich Operation

- □ Vision
 - EGR may be substituted for lean burn excess air
 - Engine can be operated on one or more cylinders in rich/stoichiometric mode only during NOx decomposition
- Concerns
 - Power/IMEP
 - Knock
 - Heat release and misfire
 - Engine deterioration

Stoichiometric/Rich Operation of Natural Gas (Test Engine – 3)

- 1998 Cummins L10280G
- Inline 6 cylinder
- Spark ignited
- Turbocharged
- Electronically managed
- Closed-loop fuel injected

Engine Modifications for In-Cylinder Pressure Measurement

Cylinder head was rebuilt and modified by Cummins Inc.

Kistler type 6067C cylinder pressure sensor installed on cylinder #1 Pressure sensor port on cylinder head

Other Engine Modifications

- ☐ EGR
 - Low pressure to low pressure EGR was utilized
 - EGR percentage was calculated by taking the ratio of CO₂ concentration measured in the raw exhaust and at the engine intake
 - EGR percentage was up to 14%
- Air/fuel ratio
 - A circuit was constructed to emulate the signal from the OEM wide range O₂ sensor to control the fueling of the engine at adjustable values
- □ In-cylinder NOx measurement
 - In-cylinder NOx was measured continuously using a Cambustion "fast NOx analyzer" fed through a modified spark plug installed in cylinder #6

EGR Percentage for Each Engine Operating Point

Test Matrix for 1998 Cummins L10G

	Engine Horse Power (hp)	Speed (rpm)	Load (ft-lb)	Baseline Runs		NOx Decomposition Using Bottled NO	
				Rich	Rich EGR	Rich	Rich EGR
Low Speeds	8	800	50	X	Х	X	Х
	30	800	200	X	X	X	Х
	60	800	400	X	X	X	Х
Intermediate Speeds	50	1300	200	X	X	X	X
	100	1300	400	X	X	X	Х
	200	1300	800	X	X	X	Х
Rated Speeds	60	2100	150	Х	Х	Х	Х
	140	2100	350	Х	Х	Х	Х

Emphasis was placed on running the engine close to stoichiometric and with EGR at an air/fuel ratio of 0.97 (slightly rich)

NOx Injections at Low, Intermediate, and Rated Speeds with High Loads

Similar tests were conducted with lower loads

Summary of NOx Decomposition Rates at $\lambda = 0.97$

Influence of EGR on NOx Decomposition at 1300rpm, 800ft-lb

Summary of NOx Decomposition Rates at $\lambda = 0.97$

- □ Overall NOx decomposition percentages were between 28% and 91%
- Highest NOx decomposition was at low speed and high load (800 rpm and 400 ft-lb)
- □ Lowest NOx decomposition was at rated speeds (2100 rpm)
- These decomposition rates were corroborated with CHEMKIN modeling data, for stoichiometric or slightly rich operation

In-cylinder NOx Measurement

In-cylinder NOx was measured using a Cambustion "fast NOx analyzer" fed through a modified spark plug installed in cylinder #6

NOx Decomposition Research

- Data processing and data quality control are not yet complete
- Additional runs are planned to clarify the role of EGR

NOx Adsorbtion System

- Raw exhaust from the engine directed to the NOx adsorber through a particulate filter, two heat exchangers and a demister
- Exhaust from the adsorber sampled in the dilution tunnel, and compared with baseline NOx level for the same operating condition
- Adsorption equipment supplied by Sorbent Technologies

NOx Adsorber
Demister

Heat Exchangers

NOx Adsorber

Hot Air Blower

NOx Adsorber Loading at 800 rpm and 200 ft-lb

- Adsorber was loaded for 120 minutes
- Adsorbtion temperature under 100 °F
- 60 lbs of sorbent material

NOx Adsorber Desorption Phase

- NOx Adsorber was desorbed using the hot air blower and sampled at the dilution tunnel
- □ Flow rate 170 CFM at 660 °F
- More rapid, higher concentration NOx desorption is desirable

NO_X Emissions Model with Two Adsorbers in Parallel

- 0.018 g/s engine out emissions without aftertreatment at steady state
- 90% adsorber efficiency, 50% engine decomposition percentage
- Overall NOx reduction is 82%
- Higher decomposition percentage allows downsizing of the adsorption system

Timeline

Future Plans

- Additional EGR/Stoichiometric runs, cylinder to cylinder variation, effect of EGR
- Chemical kinetic modeling effect of exact EGR quantity
- NOx adsorption/desorption determine loading rates as a function of temperature
- System modeling two adsorbers possible desorption loop system sizing
- Economic analysis capital and operating costs
- Propose (and possibly validate) large bore engine application

Cooperative Research

- Request engine manufacturers to review control scheme
- Request Sorbent Technologies to review economic analysis
- Work with Colorado State University on large bore application

Graduate Students

- Matt Swartz graduated, May 05
- Ramprabhu Vellaisamy graduated, May 05
- Chamila Tissera expected graduation, Sep 06
- Emre Tatli expected graduation, May 07
- Andy Zimmerman expected graduation, May 06
- Publications/Presentations
 - SAE 2005-01-0234
 - ASME ICED2004-839
 - Second Annual Advanced Stationary Reciprocating Engines Conference
 - ORNL Workshop